Dense Set of Negative Schwarzian Maps Whose Critical Points Have Minimal Limit Sets
نویسنده
چکیده
We study C2-structural stability of interval maps with negative Schwarzian. It turns out that for a dense set of maps critical points either have trajectories attracted to attracting periodic orbits or are persistently recurrent. It follows that for any structurally stable unimodal map the ω-limit set of the critical point is minimal.
منابع مشابه
Some points on generalized open sets
The paper is an attempt to represent a study of limit points, boundary points, exterior points, border, interior points and closure points in the common generalized topological space. This paper takes a look at the possibilities of an extended topological space and it also considers the new characterizations of dense set.
متن کاملInvariant Measures of Minimal Post-critical Sets of Logistic Maps
We construct logistic maps whose restriction to the ω-limit set of its critical point is a minimal Cantor system having a prescribed number of distinct ergodic and invariant probability measures. In fact, we show that every metrizable Choquet simplex whose set of extreme points is compact and totally disconnected can be realized as the set of invariant probability measures of a minimal Cantor s...
متن کاملLIMIT AVERAGE SHADOWING AND DOMINATED SPLITTING
In this paper the notion of limit average shadowing property is introduced for diffeomorphisms on a compact smooth manifold M and a class of diffeomorphisms is given which has the limit average shadowing property, but does not have the shadowing property. Moreover, we prove that for a closed f-invariant set Lambda of a diffeomorphism f, if Lambda is C1-stably limit average shadowing and t...
متن کاملDensity of the Periodic Points in the Interval Set
The dynamical system (f,R) is introduced and some of its properties are investigated. It is proven that there is an invariant set Λ on which the periodic points of f are dense.
متن کاملStatistical Properties of Unimodal Maps: Smooth Families with Negative Schwarzian Derivative
We prove that there is a residual set of families of smooth or analytic unimodal maps with quadratic critical point and negative Schwarzian derivative such that almost every non-regular parameter is Collet-Eckmann with subexponential recurrence of the critical orbit. Those conditions lead to a detailed and robust statistical description of the dynamics. This proves the Palis conjecture in this ...
متن کامل